Fabric as a research platform

A Blockchain of Opaque Blobs
For BPASE Stanford Jan 2017
Intro:

❖ Zaki Manian
❖ Cofounder of Skuchain
❖ Skuchain has users in Banking, Industrial and Trade Finance world.
❖ I’m in the business of appropriating cryptocurrency technologies for other ends
The Value Proposition of an Authoritative Record

Skuchain BBO replacing letter of credit

Commonwealth Bank, Wells Fargo and Briggann Cotton Pioneer Landmark Blockchain Trade Transaction
Fabric 1.0 as a Research Tool

- In ~March, Fabric will ship their 1.0 architecture.
- This will be helpful for commercial users of their stack because it will broaden the deployment opportunities.
- Argue that Fabric 1.0 could be a boon to academic community’s ability explore what’s possible, useful and interesting in blockchain model computing.
Blockchain Model of Computations

- A Total Order | Some kind of distributed consensus
- A Peer to Peer network
- Private and Public Computation Channels

FABRIC | QUORUM | ASSEMBLY and others follow this basic abstraction
Barriers to Entry
Reducing Barriers to Entry

- There is a high barrier to entry to experimental blockchain systems.
- Either deep expertise in an existing blockchain technology like Ethereum or Bitcoin is needed.
- New systems need to be built from the ground up.
- The ultimate cause is implicit dependencies between subsystems.
Opaque Blobs?

- Opaque in the sense that the daemon never deserializes the data upon which it’s operating.
- The data is frequently encrypted.
- The opaque blob approach forces explicit dependencies between elements of the system.
Consensus

- The Consensus API for Fabric has 2 calls.
 - Submit Blob
 - Return a Block of Blobs at a given block height
- Consensus can provided by any system that can respond to these two APIs.
Fabric State Diagram
What might more Consensus Tech do?

- Larger more dynamic consensus groups are going to be interesting to for some Fabric applications
- But I’m going to admit, some fancy next-gen consensus tech is going to have more impact in the public blockchain world than the enterprise in the next 3-5 years.
- But Fabric will get you a working Proof of Concept pretty fast vs right now white paper to something useful is about 2-3 years.
Chaincode

- Chaincode are the transaction processing engines.
- They execute agreed upon business logic
 - They are excellent for agreeing on and executing on on shared data.
- Fundamentally, chaincode transformer a user provided blob of bytes and the current state of a merkle tree into a new state of the merkle tree
Chaincode Properties

- Who is the admin here?
- BFT guarantees of immutability and liveness
- The net result is an authoritative information utility.
Do We need Cryptography in Chaincode

- Fabric already contains a sophisticated PKI system. See Jonathan and David’s talk
- The cryptographic attributes from this system are available within the business logic of chaincode
- Do we need anything more?
Business Logic + extended Cryptography

- Business Logic can be attached to arbitrary credentials
- Signatures, SNARKS, oblivious Bloom filters…
- Computations are strongly ordered by the total ordering systems
- Why?
Peers are not the real users

- A neutral multilateral authoritative platform enforces cryptographic computation
- Delegate authority all the way to end users, hardware devices
- The end users of the system shouldn’t have to fully transfer their privacy interests to peers.
- Private channels are just part of the needed toolkit
Problems I’m thinking about

❖ Predicate systems where all possible signers are not enumerated when the predicate is specified but are replay resistant.

❖ Signature systems for partial and redacted time series data records.
What’s Fabric Got to Offer

❖ Ready access to cryptography libraries in existing language.
❖ Simple integration paths
❖ What I’m hoping we will see:
 ❖ Protocols, rules and languages for credentials in blockchain computation
 ❖ A structured way of thinking about what is secure in this setting
Conclusions

- Fabric has minimized implicit dependencies between components.
- This makes it easier to do certain kinds of experiments in Blockchain applications.
- The results of these experiments are useful in commercial applications.
FIN